中学校 数学

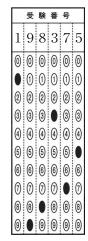
解答についての注意点

- 解答用紙は、マーク式解答用紙と記述式解答用紙の2種類があります。
- 2 大問 □~大問 3 については、マーク式解答用紙に、 大問4については、記述式解答用紙に記入してください。
- 3 解答用紙が配付されたら、まずマーク式解答用紙に受験番号等を記入し、受験番号に 対応する数字を、右の記入例に従って、鉛筆で黒くぬりつぶしてください。※1 記述式解答用紙は、全ての用紙の上部に受験番号のみを記入してください。※2
- 4 大問 □~大問 3 については、次のマーク式解答用紙への解答上の注意をよく読んで 解答してください。

マーク式解答用紙への解答上の注意

解答は、マーク式解答用紙の問題番号に対応した解答欄にマークしてくだ さい。間違ってマークしたときは、消しゴムできれいに消してください。

マーク式解答用紙 受験番号記入例 ※1



記述式解答用紙 受験番号記入例 ※2

受験番号 198375

問題の文中の[T]、[T] などには、特に指示のないかぎり、符号 $(-, \pm)$ 、数字 $(0 \sim 9)$ 、又は文字 $(a \sim e)$ が入り (2) ます。ア、イ、ウ、…の一つ一つは、これらのいずれか一つに対応します。それらをマーク式解答用紙のア、イ、ウ、… で示された解答欄にマークしてください。

例 アイウ に - 7a と答えたいとき

なお、同一の問題文中に「ア」、「イウ」などが2度以上現れる場合、2度目以降は、「ア」、「イウ」のように細枠で 表記します。

分数の形で解答する場合、分数の符号は分子につけ、分母につけてはいけません。 (3)

例えば、 $\frac{L T J}{D}$ に $-\frac{4}{5}$ と答えたいときは、 $\frac{-4}{5}$ として答えてください。

また、それ以上約分できない形で答えてください。

例えば、 $\frac{3}{4}$ 、 $\frac{2a+1}{3}$ と答えるところを、 $\frac{6}{8}$ 、 $\frac{4a+2}{6}$ のように答えてはいけません。

(4) 小数の形で解答する場合、指定された桁数の一つ下の桁を四捨五入して答えてください。 また、必要に応じて、指定された桁まで(0)にマークしてください。

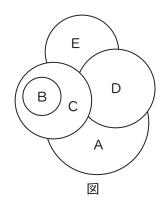
例えば、「丰」. 「クケ」に 2.9 と答えたいときは、2.90 として答えてください。

- (5) 根号を含む形で解答する場合、根号の中に現れる自然数が最小となる形で答えてください。 例えば、 $4\sqrt{2}$ 、 $\frac{\sqrt{13}}{2}$ 、 $6\sqrt{2a}$ と答えるところを、 $2\sqrt{8}$ 、 $\frac{\sqrt{52}}{4}$ 、 $3\sqrt{8a}$ のように答えてはいけません。
- (6) 比の形で解答する場合、最も簡単な整数比で答えてください。 例えば、1:3と答えるところを、2:6のように答えてはいけません。
- その他、係員が注意したことをよく守ってください。

指示があるまで中をあけてはいけません。

- (I) 1個のさいころを 4 回続けて投げるとき、次の確率を求めなさい。ただし、さいころは 1 から 6 までのどの目が出ることも同様に確からしいものとする。
- (ア) 1 の目がちょうど 2 回出る確率は <u>アイ</u> である。
- (2) 3 辺の長さが 5、16、19 の三角形について、最も大きい内角の大きさは「サシス」度である。
- (3) 次の(ア)、(イ)の問いについて、値を求めなさい。
- (ア) 大きさ5のデータ 4、4、5、6、6 の分散は セン である。
- (イ)大きさ5のデータ 3、4、7、8、10 の標準偏差は √タチツ である。

(I) 図の A、B、C、D、E の 5 つの領域を、赤、青、黄、緑の 4 色 すべてを使い、隣り合う領域が異なる色となるように塗り分け る方法は アイ 通りある。ただし、各 4 色は少なくとも 1 か所 には使うものとする。



- (2) 2 次方程式 $x^2-3ax+5=0$ が、1< x< 2 と 3< x< 5 の範囲にそれぞれ実数解を1 つずつもつとき、定数 a の値の範囲は $\frac{\dot{}}{||f|||}$ ||f|| ||f|| ||f||
- $(3) \ \ x = \frac{4}{\sqrt{10} + \sqrt{2}} \ , \ \ y = \frac{4}{\sqrt{10} \sqrt{2}} \ \mathcal{O} \, \mathcal{E} \, \tilde{\mathcal{E}} \, , \ \ x + y = \sqrt{\boxed{\cancel{10}}} \ \mathcal{T} \, \tilde{\mathcal{D}} \, \mathcal{V} \, , \ \ x^2 + y^2 = \boxed{\cancel{\cancel{5}}} \ \mathcal{T} \, \tilde{\mathcal{D}} \, \tilde{\mathcal{E}} \, \tilde{\mathcal{E}} \, .$
- (4) 8^{2026} について、一の位の数字は コ である。また、最高位の数字は サ である。 ただし、 $\log_{10}2 = 0.3010$ 、 $\log_{10}3 = 0.4771$ とする。
- (5) x > 0 のとき、 $\left(x + \frac{1}{x}\right)\left(x + \frac{4}{x}\right)$ の最小値は $\boxed{\hspace{0.1cm}}$ である。

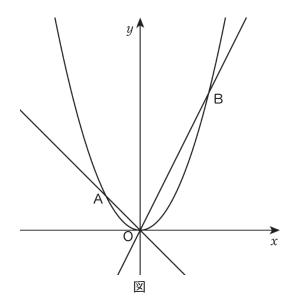
- (6) 実数 x、y が $x^2 + y^2 8x + 6y \le 0$ を満たすとき、2x + y の最大値は ス + セ \sqrt{y} である。
- (7) 2 つの曲線 C_1 : $y = x^2 + 3x$ $(x \le 0)$ 、 C_2 : $y = 2x^2 x$ $(x \ge 0)$ と直線 l: y = tx がある。

-1 < t < 3 のとき、 C_1 とl、 C_2 とlで囲まれてできる図形の面積をそれぞれ S_1 、 S_2 とすると、

$$S_1 = \frac{9}{\cancel{f}} \left(y - t \right)^{\frac{1}{\cancel{f}}}$$
、 $S_2 = \frac{\cancel{f}}{\cancel{f}} \left(t + \cancel{y} \right)^{\frac{1}{\cancel{f}}}$ である。

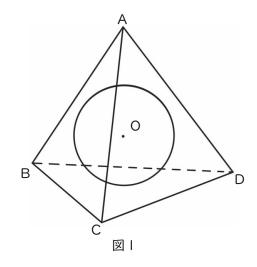
(8) $a_1+a_3=6$ 、 $a_2+a_4+a_6=21$ を満たす等差数列 $\{a_n\}$ に対して、一般項は $a_n=$ ヒn- フ であり、 $\sum\limits_{k=1}^{60} \frac{1}{\sqrt{a_{k+1}}+\sqrt{a_k}}=$ へ である。

図のように、放物線 $y=ax^2$ (a>0) と直線 y=-x、直線 y=2x がある。放物線 $y=ax^2$ と直線 y=-x との交点のうち 原点 O と異なる点を A、放物線 $y=ax^2$ と直線 y=2x との交点のうち 原点 O と異なる点を B とする。点 B の x 座標が 4 であるとき、次の問いに答えよ。ただし、円周率を π とする。

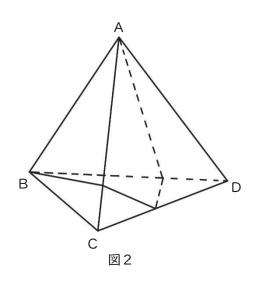


- (1) aの値は ア である。
- (2) 点 A の座標は (「ウエ」, 「オ」) である。
- (3) 直線 AB の傾きは <u>カ</u>であり、y 切片は <u>キ</u>である。
- (5) 線分 AB 上に点 P をとり、 \triangle OAP の面積が \triangle OAB の面積の $\frac{2}{3}$ になるとき、直線 OP の式は y= コ x である。
- (7) 3点 O、A、Bを通る円の半径は タ√チ である。

1辺が6cmの正四面体ABCDがある。図 I のように、 点 O を中心とする球が正四面体ABCDの各面に接して いる。また、辺 BCの中点を M とし、頂点 A から平面 BCDに下ろした垂線と平面 BCDとの交点を H とする。 このとき、次の問いに答えよ。



- (I) AM の長さを求めよ。
- (2) AH の長さを求めよ。
- (3) AO: OH を求めよ。
- (4) 球 O の半径を求めよ。
- (5) △BMH ∽ △AMC であることを証明せよ。
- (6) 図2のように正四面体 ABCD において、ひもを点 Aから点 B まで、辺 BD、DC、CA を通るようにかける。 ひもの長さが最短となるとき、そのひもの長さを求めよ。



令和8年度大阪府・大阪市・堺市・豊能地区公立学校教員採用選考テスト

第二次選考択一問題の正答について

5 2

	校種	Ī		中等	学校		教	科・科	·目			数学								
大	問番号	1																		
		(1)										(2)			(3)					
解	答番号	ア	1	ウ	エ	オ	カ	+	ク	ケ	コ	サ	シ	ス	セ	ソ	タ	チ	ツ	テ

大問番号	2																												
	(1)		(2) (3) (4) (5) (6) (7)							(8)	8)																		
解答番号	ア	1	ゥ	エ	オ	カ	+	ク	ケ	П	サ	シ	ス	セ	ソ	タ	チ	ツ	テ	+	ナ	=	ヌ	ネ	1	/\	٢	フ	^
正答番号	9	6	I	4	9	2	I	0	6	4	3	9	5	5	5	I	6	3	3	I	2	4	I	3	5	3	2		5

2 0 4 5 I

大	:問番号	3																
		(1)		(2)			(3)		(4)		(5)	(6)				(7)		
解	答番号	ア	1	ゥ	エ	オ	カ	+	ク	ケ	П	サ	シ	ス	セ	ソ	タ	チ
正	答番号		2		2	2	ı	4	8	0	3	1		5	8	5	2	5

6 2 5 4 3 2 I

受験番号

令和8年度大阪府・大阪市・堺市・豊能地区公立学校教員採用選考テスト

中学校 数学 解答用紙 (1枚のうち1)

((5)は、解答及び解答に至る過程をすべて、解答用紙に記入すること。(1)~(4)、(6)は答えのみでよい。)

4 得点

(1)

$$AM = 3\sqrt{3} \text{ (cm)}$$

(2)

$$AH = 2\sqrt{6} \text{ (cm)}$$

(3)

(4)

$$\frac{\sqrt{6}}{2}$$
 (cm)

(5)

(証明)

 \triangle BMH $\lor \triangle$ AMC $\lor t$

BM =
$$\frac{1}{2}$$
 × BC = 3

(I)より AM =
$$3\sqrt{3}$$

よって、BM:AM =
$$1:\sqrt{3}$$
 ・・・・・①

(2)
$$\sharp$$
 $H = \sqrt{(3\sqrt{3})^2 - (2\sqrt{6})^2} = \sqrt{3}$

$$MC = \frac{1}{2} \times BC = 3$$

$$\sharp \neg \tau$$
, MH: MC= 1: $\sqrt{3}$ · · · · · · · ②

△ABH が∠AHB=90°の直角三角形なので

BH =
$$\sqrt{6^2 - (2\sqrt{6})^2} = 2\sqrt{3}$$

$$AC = 6$$

よって、BH: AC= 1:
$$\sqrt{3}$$
 ·····③

①~③より、BM:AM = MH:MC = BH:AC = $1:\sqrt{3}$ となり、

3組の辺の比がすべて等しいので、△BMH∽△AMCである。

 $6\sqrt{7} \text{ (cm)}$